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The effect ive diffusion of an impur i ty  in a flow of non-Newtonian liquid is  investigated.  

The theory  of the dis t r ibut ion of dynamica l ly  pass ive  impur i t i e s  in a l amina r  flow of Newtonian liquid 
was developed in [1]. In the p re sen t  pape r  it is  shown that the method of solution in [1] may  be extended to the 
case  of a non-Newtonian liquid. The veloci ty  dis t r ibut ion over  the tube c r o s s  sect ion sa t i s f i e s  the law 

n+___L 

V (r) 1 4- 32 . n 

Fo r  n = 1, Eq. (1) r educes  to the Poiseui l le  equation, descr ib ing  the veloci ty  prof i le  in a l amina r  flow 
of Newtonian liquid. 

Suppose that,  in a ce r t a in  c r o s s  sect ion of the tube (x = 0), a batch of impur i ty  is int roduced into the 
liquid flow (the impur i ty  is  d is t r ibuted  tmiformly over  the whole c r o s s  section) and then i ts  concentra t ion is  
m e a s u r e d  at a point lower down the flow. The impur i ty  is  a s sumed  to be dynamical ly  pass ive ,  i . e . ,  to have 
no effect  on the flow velocity,  and the introduction of impur i ty  does not d isrupt  the motion. 

The dis t r ibut ion of impur i ty  in the flow is  de te rmined  by the balance between convect ive t r a n s f e r  along 
the tube and m o l e c u l a r  diffusion. The d i f ferent ia l  equation for  this p r o c e s s  is  

OC . . . . .  OC = D  ( O~C :_ 1 OC O'-C ) 
O---E + V (r) Ox . c?r 2 r Or Ox 2 , . (2) 

A s s u m e  that the concentra t ion changes  m o r e  slowly along the x axis than over  the tube radius ,  i . e . ,  that 

O~C 02C <( (3) 
ax 2 Or ~ 

in a f r a m e  of r e f e r e n c e  moving with mean  flow veloci ty  fi, the veloci ty  of the liquid is  given by the equation 

n§  

V (r) - u 2n - -  (1 -- an) 
1 - -  n ' ( 4 )  

and, taking Eq. (3) into account,  the di f ferent ia l  equation of the p r o c e s s  takes  the fo rm 

1 Ot 1 + n Ox Or 2 r -Orr " ( 5 )  

In Eq. (5), the de r iva t ives  a re  taken in a moving f r a m e  of r e fe rence .  

In the approximat ion  ~ C/~t  = const  and with the boundary condition 

( L:o ,~ 
the s teady solution of Eq. (5) is ~+3,, 

n uR ~ c~C { ( r  )2 [ 1 4n ~ ] 2n ( r )  ~ } 
C - = C _  2 ( l + n )  D ~ --R- 2 (1 ' - - 3 n ) ( l + 5 n )  1-?3n R -  " 

(7) 
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where 

The flux density of impur i ty  passing through the tube c r o s s  sect ion is 

In the next approximation,  

l 

] = 2 ff C (~) V (~) ~d~ = - -  Def O__ff_C 
�9 O X  ' 
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(s) 

n~ u~P2 (9) 
Def = 2 (1 " 3n) (1 + 5n) D 

assuming that ~C/8 x = const ,  

ac ai o~-ff 
at -- ~ ---- Def 0x ~ (10) 

The resu l t  obtained shows that,  within the f r amework  of the assumptions made, the distr ibution of the 
impur i ty  along the x axis is desc r ibed  by the diffusion equation. 

It r emains  to cons ider  the r e s t r i c t i on  of the prob lem due to the assumption of slow change in impur i ty  
concentra t ion along the longitudinal coordinate  [see Eq. (3)]. 

According to Eq. (7), the der ivat ive  of the concentra t ion with respec t  to x is 

n ut~ 0~_, i [ r ' ~  2 o c  _ _ .  

Ox = O---x- ' 2 ( l +  n) D Ox 2 ( I - g - /  
l - t . -3n 

2 (1 + an) (1 + 5n) 1 + 3n 

It follows f rom Eq. 
( r /R  = 0), can be wri t ten  in the form 

OC 
Ox 

(11) 

(11) that the condition 8C/ax = const  leads to an inequality which, on the flow axis 

n ( 1 + 8n + 7n ~) ~p2 02~- 
- - ) >  4(1 +n)(1  +3n)(1 --5n) D Ox 2 

Let  L be the length along the flow axis in which marked  change in the impur i ty  concentrat ion occurs .  
Then the above inequality takes the fo rm 

LD n (1 '.-- 8n + 7n ~) 
R~ 4 ( 1 -+- n) (1 + 3n) ( 1 + 5n) 

F u r t h e r  r e s t r i c t ion  on the problem resu l t s  f rom the assumption D << Def. 

(12) 

F r o m  Eq. (9) 

Ru / 2(1 + 3n) (1 -+- 5n) 
- D  >) n" 

(13) 

Since 

Eqs. (12) and (13) give the inequality 

n(l  + 8n -r 7n 2) 
< 1 ,  

4(1 + n)(1 + 3n)(1 + an) 

L Ru .~, r  (1 -+ 3n)(l -_ 5n) 
>> ~ .~J n 2 

(14) 

which allows the l imits  of applicabili ty of Eq. (10) to be established. 

If the rheological  p roper t i e s  of the flow are  known, i . e . ,  if  the value of n in Eq. (1) is known, then 
determining the value of Def by the method of [2] pe rmi t s  the calculation of the flow veloci ty (if D is known) 
or  of D (if the flow veloci ty is  known). 

In conclusion, note that when n = 1 the presen t  solution reduces  to that in [1]. 

N O T A T I O N  

V(r), local  liquid velocity;  u, liquid velocity averaged over  tube c ro s s  section; n, flow coefficient;  x, 
longitudinal coordinate;  r ,  radius at a ce r ta in  point; R, tube radius;  ~ = r / R ,  dimensionless  coordinate;  L, 
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length along flow axis; t, t ime;  C, impur i ty  concentrat ion;  D, coefficient of molecular  diffusion; Def , effective- 

diffusion coefficient. 
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Continuity equations for  par t ic le  distributions by size and residence t imes are considered in pro-  
cesses  associated with par t ic le  growth. The relat ion between these equations and the par t ic le-  
balance equation in phase space is shown. 

Par t i c le -ba lance  equations (continuity equations for part icle  distributions) occupy an important  place in 
the study of p roces se s  associa ted with par t ic le  growth [1-11]. The most  general  approach to the formulation 
of such equations was outlined in [12, 13], which proposed the 3escription of a heterogeneous process  as-  
sociated with any t ransformat ion  of par t ic les  of a d isperse  phase, such as the motion of a point reflecting 
the state of the par t ic le  in a mult idimensional  phase space (a phase space is taken to be a sys tem of spatial 
coordinates and coordinates charac ter iz ing  the internal  state of the particle).  The par t ic le-balance  equation 
in this case is 

m 

at ~ o~ - ~ - / = , .  (1) 
k = l  

where Pl = Pl (x, y, x, ~1 . . . . .  {m) is the density of the par t ic le  distribution. 

For  a nonideal system, t e rms  charac ter iz ing  par t ic le  mixing must  be introduced in Eq. (1). For  
example, if par t ic le  mixing proceeds by the diffusion law, the appropriate  equation is 

001 div (~Pl - -  D grad 01) -- ~ ~ Pl = ' i -  (2) 
Ot k=l " 

In p roces se s  of par t ic le  growth, the par t ic le  size serves  as the internal  coordinate. If growth is ac-  
companied by other p rocesses  (drying, chemical  change, etc. ), coordinates charac te r i s t i c  for these pro-  
cesses  (moisture content, degree of t ransformat ion,  etc. ) must  be introduced into the equation. As a rule, 
however,  all these pa rame te r s  may be represented  as different functions of a single variable -- 7, the 
residence t ime of the par t ic le  in the apparatus. Thus, Eq. (2) may be written in the form 

0p, div (~p~ - -  D grad p~) : 092 - $2, (3) 
Ot 

where p 2 = P 2( x, Y, z, 7). 

It can easi ly be shown that severa l  known solutions of the balance equations in p rocesses  of part icle  
growth [1-11] are  part ial  cases  of the solution of Eqs. (2) and (3) for  conditions of ideal mixing and ideal 
substitution. In the present  work, an attempt is made to solve the continuity equation of the part icle  dis tr ibu-  
tion in the diffusion model for  nonideal conditions. 
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